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Abstract In this paper, we present an extension for non-negative increasing and
co-radiant (ICR) functions over a topological vector space. We characterize the essential
results of abstract convexity such as support set, subdifferential and polarity of these func-
tions. We also give some characterizations of a certain kind of polarity and separation property
for non-convex radiant and co-radiant sets.

Keywords Monotonic analysis · ICR function · Radiant set · Co-radiant set · Abstract
convexity

Mathematics Subject Classification (2000) 26B25 · 26A48

1 Introduction

It is well-known that every proper and lower semi-continuous convex function can be
expressed as a pointwise supremum of a family of affine functions majorized by it (see [10]).
It is natural to see what happens if we replace affine functions by a certain class of functions
which are so-called elementary functions. This gave rise to the subject of Abstract Convexity
(for more details see [9,11,12]). It is well-known that some classes of increasing functions
are abstract convex, for example, the class of Increasing and Positively Homogeneous (IPH)
functions and the class of Increasing and Convex-Along-Rays (ICAR) functions. The first
studies of these functions were carried out over the cones in topological vector spaces (see
[3,4]). Some suitable extensions for these functions defined over the whole of topological
vector spaces were obtained in [2,7,8].
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Increasing and Co-radiant (ICR) functions are another class of increasing functions which
are abstract convex. The theory of ICR functions can be applied in mathematical economics
(see, e.g., [6]), where quasi-concave ICR functions have been studied. The first character-
ization of these functions has been shown in [10] over the cone Rn+. This was generalized in
[5], where ICR functions defined over cones in a vector space.

In this paper, we generalize ICR functions defined on a topological vector space and give
some characterizations of these functions. As an application, we present a kind of separation
property for radiant and co-radiant sets.

The layout of the paper is as follows. In Sect. 2, we collect definitions, notations and
preliminary results related to ICR functions. In Sects. 3 and 4, we obtain some results of
abstract convexity for ICR functions and characterize their subdifferential and support sets.
We study polarity of ICR functions in Sect. 5. Finally, the relation between IPH and ICR
functions will be given in Sect. 6.

2 Preliminaries

Let X be a topological vector space. We assume that X is equipped with a closed convex
pointed cone S (the latter means that S ∩ (−S) = {0}). We say x ≤ y or y ≥ x if and only
if y − x ∈ S.

A function f : X −→ [0,+∞] is called co-radiant if f (λx) ≥ λ f (x) for all x ∈ X and
all λ ∈ (0, 1]. It is easy to see that f is co-radiant if f (λx) ≤ λ f (x) for all x ∈ X and all
λ ≥ 1. The function f is called increasing if x ≥ y �⇒ f (x) ≥ f (y).

Definition 2.1 An increasing function f : X → R is called concave-along-rays (ICAR), if
for each x ∈ X the function fx (α) = f (αx) is concave for all α ∈ (0,+∞).

The support set of a 	-convex function is defined by:

supp( f,	) := {l ∈ 	 : l(x) ≤ f (x) ∀ x ∈ X},
where 	 is the set of elementary functions. Also, the 	-subdifferential at a point x0 ∈ X is
defined by:

∂	 f (x0) := {l ∈ 	 : f (x) − f (x0) ≥ l(x) − l(x0) ∀ x ∈ X}.
The following definitions are well-known.

(i) A non-empty subset A of X is called downward, if x ∈ A, x ′ ∈ X and x ′ ≤ x imply
x ′ ∈ A.

(ii) A non-empty subset B of X is called upward, if x ∈ B, x ′ ∈ X and x ≤ x ′ imply
x ′ ∈ B.

(iii) A non-empty subset A of X is radiant, if x ∈ A and 0 < λ < 1 imply λx ∈ A. Also, a
subset B of X is co-radiant, if x ∈ B and λ > 1 imply λx ∈ B.

Now, we present some examples of ICR functions.

Example 2.1 It is easy to check that an ICAR function f such that f (0) ≥ 0 is ICR. In fact,
we have for each x ∈ X and λ ∈ (0, 1] :

f (λx) = fx (λ) = fx (λ + (1 − λ)0) ≥ λ fx (1) + (1 − λ) f (0) ≥ λ f (x).

Example 2.2 An increasing positively homogeneous function f of degree δ, where 0 < δ ≤
1, is ICR.
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3 Abstract convexity of non-negative ICR functions

Some definitions related to the abstract convexity have been introduced in [11]. In this sec-
tion, we discuss on abstract convexity with respect to a certain class of ICR functions. We
also investigate subdifferential and a special kind of polarity of ICR functions.

Consider the function l : X × X × R++ −→ [0,+∞] defined by:

l(x, y, α) := max{0 ≤ λ ≤ α : λy ≤ x}, (3.1)

(we use the convention max ∅ = 0).
In the following, we give some properties of this function.

Proposition 3.1 For every x, y, x ′, y′ ∈ X; γ ∈ (0, 1]; µ, α, α′ ∈ R++, one has

l(µx, y, α)= µl

(
x, y,

α

µ

)
, (3.2)

l(x, µy, α)= 1

µ
l(x, y, µα), (3.3)

x ≤ x ′ �⇒ l(x, y, α) ≤ l(x ′, y, α), (3.4)

y ≤ y′ �⇒ l(x, y′, α) ≥ l(x, y, α), (3.5)

α ≤ α′ �⇒ l(x, y, α) ≤ l(x, y, α′), (3.6)

l(γ x, y, α)≥ γ l(x, y, α), (3.7)

l(x, γ y, α)≤ 1

γ
l(x, y, α), (3.8)

l(x, y, α)= α ⇔ αy ≤ x . (3.9)

Proof We only prove parts (3.2) and (3.7). For (3.2) we have:

l(µx, y, α) = max{0 ≤ λ ≤ α : λy ≤ µx}
= max{0 ≤ λ ≤ α : λ

µ
y ≤ x}

= max{0 ≤ µλ̃ ≤ α : λ̃y ≤ x}
= µl

(
x, y,

α

µ

)
.

Finally, (3.7) follows from (3.2) and (3.6). ��
Example 3.1 Let X = R

n and S be the cone R
n+ of all vectors in R

n with non-negative coor-
dinates. Let I = {1, 2, ..., n}. Each vector x ∈ R

n generates the following sets of indices:

I+(x) = {i ∈ I : xi > 0}, I0(x) = {i ∈ I : xi = 0}, I−(x) = {i ∈ I : xi < 0}.
Let x ∈ R

n and c ∈ R. Denote by c
x the vector with coordinates

( c

x

)
i
:=

{ c
xi

, i /∈ I0(x),

0, i ∈ I0(x).

Then, for each x, y ∈ R
n, we have

l(x, y, α) =
{

min
{

mini∈I+(y)
xi
yi

, α
}

, x ∈ K +
y ,

0, x /∈ K +
y ,
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where

K +
y :=

{
x ∈ R

n : ∀ i ∈ I+(y) ∪ I0(y), xi ≥ 0; max
i∈I−(y)

xi

yi
≤ min

i∈I+(y)

xi

yi

}
.

We can also introduce the function u : X × X × R++ −→ [0,+∞] defined by

u(x, y, β) := min{λ ≥ β : βy ≥ x}, (3.10)

(with the convention min∅ = +∞).
The following proposition gives us some properties of the function u.

Proposition 3.2 For every x, y, x ′, y′ ∈ X; γ ∈ (0, 1]; µ, β, β ′ ∈ R++, one has

u(µx, y, β) = µu

(
x, y,

β

µ

)
, (3.11)

u(x, µy, β) = 1

µ
u(x, y, µβ), (3.12)

x ≤ x ′ �⇒ u(x, y, β) ≤ u(x ′, y, β), (3.13)

y ≤ y′ �⇒ u(x, y′, β) ≥ u(x, y, β), (3.14)

β ≤ β ′ �⇒ u(x, y, β) ≤ u(x, y, β ′), (3.15)

u(γ x, y, β) ≥ γ u(x, y, β), (3.16)

u(x, γ y, β) ≤ 1

γ
u(x, y, β), (3.17)

u(x, y, β) = β ⇔ βy ≥ x . (3.18)

In the following proposition we give the relation between the functions l and u.

Proposition 3.3 Let l and u be as the above. Then, for all x, y ∈ X and all µ > 0, we have:

l(x, y, µ)u

(
y, x,

1

µ

)
= 1, (3.19)

(with the convention 0 × (+∞) = (+∞) × 0 = 1).

Proof This is an immediate consequence of the definition l and u. ��
Theorem 3.1 Let f : X → [0,+∞] be a function. Then the following assertions are
equivalent:

(i) f is ICR.
(ii) λ f (y) ≤ f (x) for all x, y ∈ X and all λ ∈ (0, 1] such that λy ≤ x.

(iii) l(x, y, α) f (αy) ≤ α f (x) for all x, y ∈ X and all α ∈ R++ , with the convention
0 × (+∞) = 0.

(iv) u(x, y, β) f (βy) ≥ β f (x) for all x, y ∈ X and all β ∈ R++, with the convention
0 × (+∞) = +∞.

Proof
(i)⇒ (ii). It is obvious.

(ii)⇒ (i i i). Let α > 0 and x, y ∈ X be arbitrary. If l(x, y, α) �= 0, then l(x, y, α)y ≤ x,

and also 0 <
l(x,y,α)

α
≤ 1. Thus, by hypothesis and the fact that l(x,y,α)

α
(αy) ≤ x,

we conclude that l(x,y,α)
α

f (αy) ≤ f (x). Therefore, holds. Trivially, (iii) holds if
l(x, y, α) = 0.
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(iii)⇒ (i). Now, let y ≤ x . Then, by (3.9), l(x, y, 1) = 1, and (iii) implies that f (y) =
f (y)l(x, y, 1) ≤ f (x). So, f is increasing. Moreover, according to (3.7), we have
λl(x, x, 1) ≤ l(λx, x, 1) for all λ ∈ (0, 1] and all x ∈ X , Thus

λ f (x) = λl(x, x, 1) f (x) ≤ l(λx, x, 1) f (x) ≤ f (λx).

Hence, f is ICR.
(i)⇒ (iv). Let u(x, y, β) �= +∞. Then u(x,y,β)

β
≥ 1, and also u(x,y,β)

β
(βy) ≥ x . Since f

is ICR, it follows that

u(x, y, β)

β
f (βy) ≥ f

(
u(x, y, β)

β
(βy)

)
≥ f (x).

Also, (iv) holds if u(x, y, β) = +∞ because 0 × (+∞) = +∞.
Finally, the proof of the implication (iv) ⇒ (i) can be done in a similar manner as the

proof of the implication (i i i) ⇒ (i). ��
Remark 3.1 Consider a

b = 0, then we should consistently have b
a = ( a

b )−1 = 0−1 = +∞,

even though a
b and b

a yield the same expression 0
0 , when both a and b are equal 0. In The-

orem 3.1 (iii) we use the convention 0 × 0−1 = 0, whereas in Theorem 3.1 (iv) we take
0 × 0−1 = +∞. In fact, this second choice is necessary for the sake of consistency with the
first one.

We could solve this apparent inconsistency regarding notation by introducing two differ-
ent operations, a “lower” division and an “upper” division, similarly to the lower addition
and upper addition often used in Abstract Convex Analysis, but we preferred to avoid this in
order to keep our notation as simple as possible.

Now, we are going to show that each non-negative ICR function is supremally generated
by a certain class of ICR functions.

Assume that y ∈ X and α ∈ R++. Consider the function l(y,α) : X → [0,+∞] defined
by l(y,α)(x) = l(x, y, α). Also, let L := {l(y,α) : y ∈ X, α ∈ R++} be the set of elementary
functions.

Remark 3.2 By (3.4) and (3.7), the function l(y,α) is an ICR function.

Theorem 3.2 Let f : X → [0,+∞] be a function. Then f is ICR if and only if there exists
a set A ⊂ L such that

f (x) = sup
l(y,α)∈A

l(y,α)(x).

In this case, one can take A = {l(y,α) ∈ L : f (αy) ≥ α}. Hence, f is ICR if and only if f is
L-convex.

Proof We only prove that each ICR function f : X → [0,+∞] satisfies

f (x) = sup
l(y,α)∈A

l(y,α)(x).

According to Theorem 3.1, we have l(y,α)(x) f (αy) ≤ α f (x) for all x, y ∈ X and all
α ∈ R++. So, if x ∈ X and l(y,α) ∈ A are arbitrary, then l(y,α)(x) ≤ f (x). Let 0 <

f (x) < +∞. Then l( x
f (x)

, f (x)) ∈ A, and since l( x
f (x)

, f (x))(x) = f (x), it follows that f (x) =
maxl(y,α)∈A l(y,α)(x).
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Now, consider f (x) = 0. Let l(y,α) ∈ A be such that l(y,α)(x) �= 0. According to
Theorem 3.1, we have l(y,α)(x) f (αy) ≤ α f (x) = 0, which implies that f (αy) = 0. But,
0 = f (αy) ≥ α, and this is a contradiction. So, l(y,α) = 0 for all l(y,α) ∈ A.

Finally, if f (x) = +∞ and α > 1, then f ( x
α
) ≥ 1

α
f (x) = +∞. Put, yα = x

α
. Trivially,

we get f (yα) = +∞ ≥ α for all α > 1, and thus l(y,α) ∈ A. Therefore, we have

f (x) = +∞ = sup
α

l(yα,α)(x) ≤ sup
l(y,α)∈A

l(y,α)(x) ≤ f (x).

Hence, the proof is complete. ��

As the above, we can also show that each ICR function f : X → [0,+∞] is infimally gen-
erated by a certain class of ICR functions. Let y ∈ X and β ∈ R++. Consider the function
u(y,β) : X → [0,+∞] defined by u(y,β)(x) = u(x, y, β). Also, let U := {u(y,β) : y ∈
X, β ∈ R++} be the set of elementary functions.

Remark 3.3 By (3.13) and (3.16), the function u(y,β) is an ICR function.

The proof of the following theorem is similar to the one of Theorem 3.2, and therefore we
omit it.

Theorem 3.3 Let f : X → [0,+∞] be a function. Then f is ICR if and only if there exists
a set B ⊂ U such that

f (x) = inf
u(y,α)∈B

u(y,α)(x).

In this case, one can take B = {u(y,β) ∈ U : f (βy) ≤ β}. Hence, f is ICR if and only if f
is U-concave.

Recall that a function f is inf-abstract-convex if f (x) = infα fα(x) such that each fα is
abstract-convex.

Corollary 3.1 If f : X → [0,+∞] is ICR, then f is inf-abstract-convex.

Proof It follows from Theorem 3.2 that f (x) = infu(y,α)
u(y,α)(x). Since each u(y,β) is ICR,

it follows from Theorem 3.2 that u(y,β) = supl(y,α)
l(y,α)(x), and the proof is complete. ��

4 Subdifferential and support sets

In this section, we present a description of support set and the L-subddiferential of an ICR
function f defined on a topological vector space X, and we investigate some properties of
support sets in X .

Recall that the support set of a 	-convex function is defined by:

supp( f,	) := {l ∈ 	 : l(x) ≤ f (x) ∀ x ∈ X},
where 	 is the set of elementary functions.

Proposition 4.1 Let f : X → [0,+∞] be an ICR function. Then

supp( f, L) = {l(y,α) ∈ L : f (αy) ≥ α}.
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Proof Let l(y,α) ∈ supp( f, L). We have l(y,α)(x) ≤ f (x) for all x ∈ X , and so, for x = αy,

we obtain α = l(y,α)(αy) ≤ f (αy). Now, suppose that (y, α) ∈ X × R++ be such that
f (αy) ≥ α. According to Theorem 3.1(iii), we have

l(y,α)(x) ≤ f (x),

for all x ∈ X, which completes the proof. ��
Recall that for a 	-convex function f : X −→ [0,+∞], the 	-subdifferential at a point
x0 ∈ X is defined as follows:

∂	 f (x0) := {l ∈ 	 : f (x) − f (x0) ≥ l(x) − l(x0) ∀ x ∈ X},
where 	 is the set of finite elementary functions.

Proposition 4.2 Let f : X → [0,+∞] be an ICR function and x0 ∈ X be such that
f (x0) �= 0,+∞. Then

{l(y,α) : f (αy) ≥ α, l(y,α)(x0) = f (x0)} ⊂ ∂L f (x0).

Moreover, ∂L f (x0) �= ∅.

Proof Let l(y,α) ∈ {l(y,α) : f (αy) ≥ α, l(y,α)(x0) = f (x0)}. By Proposition 4.1, we have
f (αy) ≥ α if and only if l(y,α)(x) ≤ f (x) for all x ∈ X. This, together with the fact that
f (x0) = l(y,α)(x0) imply that l(y,α) ∈ ∂l f (x0). Now, put y = x0

f (x0)
and α = f (x0), which

implies that f (αy) = α and l(y,α)(x0) = f (x0). Hence, l(y,α) ∈ ∂L f (x0). ��
Theorem 4.1 Let f : X → [0,+∞] be an ICR function and x0 ∈ X be such that f (x0) �=
+∞. Then

{l(y,α) : f (x0) ≤ l(y,α)(x0), α − l(y,α)(x0) ≤ f (αy) − f (x0)} ⊂ ∂L f (x0).

Moreover, the equality holds if and only if inf x∈X f (x) = 0.

Proof Let D = {l(y,α) : f (x0) ≤ l(y,α)(x0), α−l(y,α)(x0) ≤ f (αy)− f (x0)} and l(y,α) ∈ D

be arbitrary. Since
l(y,α)(x)

α
≤ 1 and 0 ≤ l(y,α)(x0) − f (x0), it follows that

l(y,α)(x)

α
(α − f (αy)) ≤ l(y,α)(x)

α
(l(y,α)(x0) − f (x0)) ≤ l(y,α)(x0) − f (x0), (4.1)

for all x ∈ X. According to Theorem 3.1(iii), we have
l(y,α)(x)

α
f (αy) ≤ f (x) for all x ∈ X.

This, together with (4.1) imply that

l(y,α)(x) − f (x) ≤ l(y,α)(x)

α
(α − f (αy)) ≤ l(y,α)(x0) − f (x0),

for all x ∈ X. Hence, l(y,α) ∈ ∂L f (x0).
Now,assume that inf x∈X f (x) = 0 and l(y,α) ∈ ∂L f (x0). By definition we have

l(y,α)(x) − l(y,α)(x0) ≤ f (x) − f (x0), (4.2)

for all x ∈ X. This means that −l(y,α)(x0) ≤ l(y,α)(x) − l(y,α)(x0) ≤ f (x) − f (x0). Thus,
f (x0) − l(y,α)(x0) ≤ infx∈X f (x) = 0, which implies that f (x0) ≤ l(y,α)(x0). Moreover,
put x = αy in (4.2), we obtain

α − l(y,α)(x0) ≤ f (αy) − f (x0). (4.3)
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Hence, l(y,α) ∈ D.
Now, we are going to show that if D = ∂L f (x0), then infx∈X f (x) = 0. Let α >

f (0) − infx∈X f (x) be arbitrary, we claim that l(0,α) ∈ ∂L f (0). For this end, we have

l(0,α)(x) =
{

α, x ∈ S
0, x /∈ S.

(4.4)

Let x ∈ S. Since f (0) ≤ f (x), then, by (4.4), we have

l(0,α)(x) − l(0,α)(0) = 0 ≤ f (x) − f (0) ∀ x ∈ S.

Also, since α > f (0) − inf x∈X f (x), then, by (4.4), we have

l(0,α)(x) − l(0,α)(0) = 0 − α ≤ f (x) − f (0) ∀ x ∈ X \ S.

So, l(0,α) ∈ ∂L f (0) for all α > f (0) − inf x∈X f (x). Moreover, since D = ∂L f (0), we
conclude that

f (0) ≤ l(0,α)(0) ≤ α ∀ α > f (0) − inf
x∈X

f (x).

As α → f (0) − infx∈X f (x), we get f (0) ≤ f (0) − inf x∈X f (x), and this implies that
inf x∈X f (x) = 0. ��
Corollary 4.1 Let f : X → [0,+∞] be an ICR function. Define the function g : X →
[0,+∞] by g(x) := f (x) − infx∈X f (x). Assume that g is an ICR function. Then we have

∂L f (x0) = {l(y,α) : f (x0) ≤ l(y,α)(x0) + inf
x∈X

f (x), α − l(y,α)(x0) ≤ f (αy) − f (x0)}.

Proof Since ∂L f (x0) = ∂L g(x0) and inf x∈X g(x) = 0, the result follows from Theorem
4.1. ��
In the rest of this section, we introduce X × R++-support sets for an ICR function which are
essential to characterize polar sets.

Let f : X → [0,+∞] be a function. The lower (X ×R++)-support set of f , suppl( f, X ×
R++), is defined by:

suppl( f, X × R++) := {(y, α) ∈ X × R++ : l( y
α
,α) ≤ f }. (4.5)

Also, we define the upper (X × R++)-support set of f , suppu( f, X × R++), by:

suppu( f, X × R++) := {(y, α) ∈ X × R++ : u(
y
β

,β
) ≥ f }. (4.6)

Let W ⊂ X × R++, recall that the α-section of W (W α) is defined by W α := {y ∈ X :
(y, α) ∈ W }. Also, y-section of W (Wy) is defined by Wy := {α ∈ R++ : (y, α) ∈ W }.
Remark 4.1 Let f : X → [0,+∞] be a function. According to (3.5), (3.6) and (4.5),
suppl( f, X × R++) is a radiant set and has the upward α-section, also the y-section of
suppl( f, X × R++) is a normal and closed set in R++.

Remark 4.2 Let f : X → [0,+∞] be a function. According to (3.14), (3.15) and (4.6),
suppu( f, X × R++) is a co-radiant set and has the downward α-section, also the y-section
of suppu( f, X × R++) is a co-normal and closed set in R++.

Proposition 4.3 Let W ⊂ X × R++ and W �= ∅. Then the following assertions are
equivalent:

123



J Glob Optim (2009) 45:355–369 363

(i) W is radiant, the section W α is upward for all α > 0, and for all y ∈ X the section
Wy is normal and closed in R++.

(ii) There is a unique ICR function f : X → [0,+∞] such that suppl( f, X × R++) = W.

(iii) There is a unique function f : X → [0,+∞] such that suppl( f, X × R++) = W.

Proof
(i)⇒ (ii). Define the function f by f (y) := sup{α > 0 : (y, α) ∈ W } for all y ∈ X (with

the convention sup ∅ = 0). We are going to show that f is an ICR function. For this
end, let y1 ≤ y2 and α ∈ Wy1 . Then y1 ∈ W α. Since W α is upward, then we obtain
y2 ∈ W α, which implies that α ∈ Wy2 . On the other hand, we have Wy1 ⊂ Wy2 .

Thus, f (y1) ≤ f (y2). Hence, f is increasing.
Now, assume that 0 < λ ≤ 1 and y ∈ X be arbitrary. Then, we get:

f (λy) = sup{α : (λy, α) ∈ W }
≥ sup

{
α :

(
y,

α

λ

)
∈ W

}
= sup{λβ : (y, β) ∈ W }
= λ f (y).

Therefore, f is a co-radiant function. Now, we are going to show that W = suppl

( f, X × R++). For this end, let (y, α) ∈ W, then f (y) ≥ α. Since f is an ICR
function, it follows from Proposition 4.1 that l( y

α
,α) ≤ f, which implies that (y, α) ∈

suppl( f, X × R++), and so W ⊂ suppl( f, X × R++).
For the converse inclusion, let (y, α) ∈ suppl( f, X×R++). This implies that f (y) ≥
α. Since Wy is closed and normal in R++, we conclude that α ∈ Wy, and hence
(y, α) ∈ W . Therefore, W = suppl( f, X × R++).
Moreover, f is unique. Indeed, suppose that there exists an ICR function h : X →
[0,+∞] such that W = suppl(h, X × R++). Let x ∈ X be such that h(x) �= 0.

Then, by Proposition 4.1, we have l(y,α) ≤ h if and only if h(αy) ≥ α. So, we
deduce that l( x

h(x)
,h(x)

) ∈ suppl(h, X × R++) = W = suppl( f, X × R++), which

means that l( x
h(x)

,h(x)
) ≤ f . Then, by (3.9) and the fact that f is positive, we obtain

h(x) ≤ f (x) for all x ∈ X . By a similar argument we can get f (x) ≤ h(x) for all
x ∈ X .

(ii)⇒ (iii). It is obvious.
(iii)⇒ (i). It is an immediate consequence of Remark 4.1.

��

The proof of the following proposition is similar to the one of Proposition 4.3, and therefore
we omit it.

Proposition 4.4 Let Q ⊂ X × R++ and Q �= ∅. Then the following assertions are equiva-
lent:

(i) Q is co-radiant, the section Qβ is downward for all β > 0, and for all x ∈ X the
section Qx is co-normal and closed in R++.

(ii) There is a unique ICR function f : X → [0,+∞] such that suppu( f, X × R++) = Q.

(iii) There is a unique function f : X → [0,+∞] such that suppu( f, X × R++) = Q.
Furthermore, the function f of (ii) is defined by f (x) := inf{β : (x, β) ∈ Q} for all
x ∈ X (with the convention inf ∅ = 0).
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5 Polarity of ICR functions and co-radiant sets

In the this section, we introduce the polarity of ICR functions and some co-radiant sets. Also,
we present a separation theorem for these sets.

Definition 5.1 The lower polar function of f : X → [0,+∞] is the function f 0
l : L →

[0,+∞] defined by

f 0
l

(
l(y,α)

) := sup
x∈X

l(y,α)(x)

f (x)
∀ l(y,α) ∈ L , (5.1)

(with the convention 0
0 = 0).

Proposition 5.1 Let f : X → [0,+∞] be a function. Then

f 0
l

(
l(y,α)

) ≥ α

f (αy)
∀ l(y,α) ∈ L .

Moreover, f is an ICR function if and only if

f 0
l

(
l(y,α)

) = α

f (αy)
∀ l(y,α) ∈ L . (5.2)

Proof By (5.1), it follows that f 0
l (l(y,α)) ≥ l(y,α)(x)

f (x)
for all x ∈ X. This implies that α

f (αy)
=

l(y,α)(αy)

f (αy)
≤ f 0

l (l(y,α)). Now, let f be an ICR function and x, y ∈ X, α > 0 be arbitrary.
According to Theorem 3.1(iii), we have l(y,α)(x) f (αy) ≤ α f (x). This, together with the
convention 0

0 = 0 imply that

f 0
l

(
l(y,α)

) ≤ α

f (αy)
∀ l(y,α) ∈ L .

Hence, we get (5.2). The rest of the proof follows from (5.1) and Proposition 3.3. ��
Corollary 5.1 Let f : X → [0,+∞] be an ICR function. Then

supp( f, L) = {ly,α) : f 0
l

(
l(y,α)

) ≤ 1 }.
We can also define the upper polar functions which are defined by the elementary functions
u(y,β).

Definition 5.2 The upper polar function of f : X → [0,+∞] is the function f 0
u : U →

[0,+∞] defined by

f 0
u

(
u(y,β)

) := inf
x∈X

u(y,β)(x)

f (x)
∀ u(y,β) ∈ U,

(with the convention 0
0 = +∞).

Proposition 5.2 Let f : X → [0,+∞] be a function. Then

f 0
u

(
u(y,β)

) ≤ β

f (βy)
∀ u(y,β) ∈ U.

Moreover, f is an ICR function if and only if

f 0
u

(
u(y,β)

) = β

f (βy)
∀ u(y,β) ∈ u.
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Definition 5.3 Let W ⊂ X × R++. The left polar set of W (W l) is defined by:

W l :=
{
(x, β) ∈ X × R++ : l( y

α
,α)(x) ≤ β, ∀ (y, α) ∈ W

}
. (5.3)

Proposition 5.3 Let W ⊂ X × R++. Then

W l = suppu(hW , X × R++),

where the function hW : X → [0,+∞] is defined by:

hW (y) := sup{α > 0 : (y, α) ∈ W }, ∀ y ∈ X, (5.4)

(with the convention sup ∅ = 0).

Proof By (5.3) and (3.19), we conclude that

W l =
{
(x, β) ∈ X × R++ : l( y

α
,α) (x) ≤ β, ∀ (y, α) ∈ W

}

=
{
(x, β) ∈ X × R++ : βu(

x, 1
α

) ( y

α

)
≥ 1, ∀ (y, α) ∈ W

}

=
{
(x, β) ∈ X × R++ : u(

x
β

,β
) (y) ≥ α, ∀ (y, α) ∈ W

}

=
{
(x, β) ∈ X × R++ : u(

x
β

,β
) (y) ≥ h (y) , ∀ y ∈ X

}

= suppu (hW , X × R++) .

��
Definition 5.4 Let W ⊂ X × R++. The right polar set of W (W r ) is defined by:

W r := {(y, α) ∈ X × R++ : l( y
α
,α)(x) ≤ β, ∀ (x, β) ∈ W }. (5.5)

Similar to the Proposition 5.3, we have the following result.

Proposition 5.4 Let W ⊂ X × R++. Then

W r = suppl(eW , X × R++),

where the function eW : X → [0,+∞] is defined by:

eW (x) := inf{β > 0 : (x, β) ∈ W }, ∀ x ∈ X, (5.6)

(with the convention inf ∅ = +∞).

Remark 5.1 Let W ⊂ X × R++ and W �= ∅. According to (3.5), (3.6) and (5.3), we have
W r is a radiant set, the section (W r )α is upward for all α > 0, and for all y ∈ X the section
(W r )y is a normal and closed set in R++.

Also, by (3.4), (3.7) and (5.5), we have W l is a co-radiant set, the section (W l)β is down-
ward for all β > 0, and for all x ∈ X the section (W l)x is a co-normal and closed set in
R++.

The sets which are closed under the closure operators W → W rl and W → W lr are identified
in the following theorem.

Theorem 5.1 Let W ⊂ X × R++. Then the following assertions are true:
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(i) One has W = W rl if and only if W is co-radiant and has the downward β-section and
closed co-normal x-section for all β > 0 and all x ∈ X.

(ii) One has W = W lr if and only if W is radiant and has the upward α-section and closed
normal y-section for all α > 0 and all y ∈ X.

Proof We only prove the part (i). Let W = W rl . By Remark 5.1, we have W is co-radiant
and has the downward β-section and closed co-normal x-section.

Conversely, let W be co-radiant and has the downward β-section and closed co-nor-
mal x-section. Then, by Proposition 4.4, there exists a unique ICR function f such that
W = suppu( f, X × R++). In view of Proposition 4.4 and (5.6), we conclude that f = eW .
Moreover, Proposition 5.4 and the fact that f = eW imply that W r = suppl( f, X × R++).
Also, according to Remark 5.1, we have W r is radiant and has the upward α-section and
closed normal y-section. Thus, by Proposition 4.3 there exists a unique function g such that
suppl(g, X × R++) = W r . By (5.4) and the definition of g, we obtain g = hWr . Since g
is unique and suppl(g, X × R++) = W r = suppl( f, X × R++), then f = hWr . Now, by
Proposition 5.3, we have:

W rl = suppu(hWr , X × R++) = suppu( f, X × R++) = W,

which completes the proof. ��
Many applications of convexity are based on the separation property. Some notions of separa-
bility of radiant and co-radiant sets has been introduced and studied in [13]. In the following
theorem, we give a kind of separation property for a certain class of co-radiant sets by an
elementary ICR function.

Theorem 5.2 Let W ⊂ X × R++. Then the following assertions are equivalent:

(i) W is a co-radiant set and has the downward β-section and closed co-normal x-section
for all β > 0 and all x ∈ X.

(ii) For each (x0, β0) /∈ W , there exists (y, α) ∈ X × R++ such that

1

β
l(y,α)(x) ≤ 1 <

1

β 0
l(y,α)(x0) ∀ (x, β) ∈ W. (5.7)

Proof
(i)⇒ (ii). Let (x0, β0) /∈ W. It follows from Theorem 5.1 that (x0, β0) /∈ W rl . This,

together with the definition of W r imply that there exists (ỹ, α) ∈ W r such that
l
(

ỹ
α
,α)

(x0) > β0 and l
(

ỹ
α
,α)

(x) ≤ β for all (x, β) ∈ W . Let y = ỹ
α
. Thus, l(y,α)

satisfies (5.7).
(ii)⇒ (i). According to Theorem 5.1, we only show that W rl ⊂ W . For this end, assume that

(x0, β0) ∈ W rl and (x0, β0) /∈ W , so by hypothesis there exists (y, α) ∈ X × R++
such that

1

β
l(y,α)(x) ≤ 1 <

1

β0
l(y,α)(x0) ∀ (x, β) ∈ W. (5.8)

The left inequality in (5.8) shows that (αy, α) ∈ W r . Then, from (x0, β0) ∈ W rl and
(αy, α) ∈ W r we conclude that l(y,α)(x0) ≤ β0, and this contradicts the right inequality in
(5.8). ��
In the following, we present a kind of separation property for a certain class of radiant sets
by an elementary ICR function.
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Theorem 5.3 Let W ⊂ X × R++. Then the following assertions are equivalent:

(i) W a is radiant set and has the upward α-section and closed normal y-section for all
α > 0 and all y ∈ X.

(ii) For each (y0, α0) /∈ W , there exists (x, β) ∈ X × R++ such that

1

α0
u(x,β)(y0) < 1 ≤ 1

α
u(x,β)(y) ∀ (y, α) ∈ W.

6 ICR functions and IPH functions

Abstract convexity of IPH functions on topological vector spaces has been studied in [2] and
[8]. It is well-known that IPH and ICR functions are closely related (see, for example, [10]).
In this section, we characterize subdifferential of ICR functions by means of IPH functions
which are simpler. For this end, we need the following definition: Let f : X → [0,+∞] be
a function. The positively homogeneous extension function f̂ of f : X × R++ ∪ {(0, 0)} →
[0,+∞] is defined by:

f̂ (x, λ) := λ f
( x

λ

)
, (x ∈ X, λ > 0), f̂ (0, 0) = 0.

We consider the natural order relation with respect to S × R++ on the space X × R++ by:

(x1, c1) ≤ (x2, c2) ⇔ x2 − x1 ∈ S, c1 ≤ c2.

The following result on the cone Rn+ has been proved in [1], and can easily be extended to
topological vector spaces with the same proof.

Theorem 6.1 A function f : X → [0,+∞] is ICR if and only if its positively homogeneous
extension f̂ (x, λ) is increasing.

Let f be an ICR function. Consider its positively homogeneous extension f̂ defined on
X × R++. It follows from Theorem 6.1 that f̂ is an IPH function.

The following results play a main role to reach our purpose.

Theorem 6.2 ([8], Theorem 3.2) Let p : X −→ [0,+∞] be a function. Then p is IPH if
and only if p is �-convex, where � := {ly : y ∈ X} and ly(x) = max{0 ≤ λ : λy ≤ x}.
Theorem 6.3 ([2], Theorem 2.7) Let p : X → [0,∞] be an IPH function, and p(x) �=
0,+∞. Then

∂� p(x) = {ly ∈ � : ly(x) = p(x), p(y) = 1}.
Let us now define L̃ := {l̃(y,α) : l(y,α) ∈ L}, where l̃(y,α)(x, c) := l(y, c

α
)(x), ∀ (x, c) ∈

X × R++.

Remark 6.1 Let f : X → [0,+∞] be an ICR function. Then f̂ is a L̃-convex function. In
this case, � in Theorem 6.2 is exactly L̃ . On the other hand, we have:

f̂ (x, c) = c f
( x

c

)
= sup

L
c l(y,α)

( x

c

)
= sup

L̃

l̃(
y, 1

α

) (x, c) .

for all x ∈ X and all c > 0.

Now, we give a description of subdifferential ∂L̃ f (y).

123



368 J Glob Optim (2009) 45:355–369

Theorem 6.4 Let f : X → [0,+∞] be an ICR function, and x0 ∈ X be such that f (x0) �=
0,+∞. Then

∂L̃ f (x0) =
{

l̃(y,α) : f (x0) = l(y,α)(x0), f (αy) = α
}

.

Proof According to Remark 6.1, Theorem 6.1 and Theorem 6.3, we have

∂L̃ f̂ (x0, 1) =
{

l̃(y,α) : f̂ (x0, 1) = l̃(
y, 1

α

)(x0, 1), f̂

(
y,

1

α

)
= 1

}
.

Now, the result follows by definition of the positively homogeneous extension function f̂ . ��
Example 6.1 Let X = R

n and S be the cone R
n+ of all vectors in R

n with non-negative
coordinates. According to Example 3.1, we have

l(x, y, α) =
{

min
{

mini∈I+(y)
xi
yi

, α
}

, x ∈ K +
y ,

0, x /∈ K +
y ,

for each x, y ∈ R
n, where

K +
y :=

{
x ∈ R

n : ∀ i ∈ I+(y) ∪ I0(y), xi ≥ 0; max
i∈I−(y)

xi

yi
≤ min

i∈I+(y)

xi

yi

}
.

Now, assume that f : Rn+ → [0,+∞] be an ICR function, and x0 ∈ X be such that
f (x0) �= 0,+∞, then

∂L̃ f (x0) =
{

l̃(y,α) : f (x0) = min

{
min

i∈I+(y)

(x0)i

yi
, α

}
, f (αy) = α

}
,

where we have:

l̃(y,α)(x, c) =
{

min{mini∈I+(y)
xi
yi

, c
α
}, x ∈ K +

y ,

0, x /∈ K +
y .

for all x ∈ Rn+ and all c > 0.
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